Improved Approximations for Euclidean $k$-means and $k$-median, via Nested Quasi-Independent Sets

11 Apr 2022  ·  Vincent Cohen-Addad, Hossein Esfandiari, Vahab Mirrokni, Shyam Narayanan ·

Motivated by data analysis and machine learning applications, we consider the popular high-dimensional Euclidean $k$-median and $k$-means problems. We propose a new primal-dual algorithm, inspired by the classic algorithm of Jain and Vazirani and the recent algorithm of Ahmadian, Norouzi-Fard, Svensson, and Ward. Our algorithm achieves an approximation ratio of $2.406$ and $5.912$ for Euclidean $k$-median and $k$-means, respectively, improving upon the 2.633 approximation ratio of Ahmadian et al. and the 6.1291 approximation ratio of Grandoni, Ostrovsky, Rabani, Schulman, and Venkat. Our techniques involve a much stronger exploitation of the Euclidean metric than previous work on Euclidean clustering. In addition, we introduce a new method of removing excess centers using a variant of independent sets over graphs that we dub a "nested quasi-independent set". In turn, this technique may be of interest for other optimization problems in Euclidean and $\ell_p$ metric spaces.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here