Improved Neural Relation Detection for Knowledge Base Question Answering

Relation detection is a core component for many NLP applications including Knowledge Base Question Answering (KBQA). In this paper, we propose a hierarchical recurrent neural network enhanced by residual learning that detects KB relations given an input question... Our method uses deep residual bidirectional LSTMs to compare questions and relation names via different hierarchies of abstraction. Additionally, we propose a simple KBQA system that integrates entity linking and our proposed relation detector to enable one enhance another. Experimental results evidence that our approach achieves not only outstanding relation detection performance, but more importantly, it helps our KBQA system to achieve state-of-the-art accuracy for both single-relation (SimpleQuestions) and multi-relation (WebQSP) QA benchmarks. read more

PDF Abstract ACL 2017 PDF ACL 2017 Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here