Improved Text Classification of Long-term Care Materials

Aging populations have posed a challenge to many countries including Taiwan, and with them come the issue of long-term care. Given the current context, the aim of this study was to explore the hotly-discussed subtopics in the field of long-term care, and identify its features through NLP. This study applied TF-IDF, the Logistic Regression model, and the Naive Bayes classifier to process data. In sum, the results showed that it reached a best F1-score of 0.920 in identification, and a best accuracy of 0.708 in classification. The results of this study could be used as a reference for future long-term care related applications.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here