Improving Generalization of Meta-Learning With Inverted Regularization at Inner-Level

Despite the broad interest in meta-learning, the generalization problem remains one of the significant challenges in this field. Existing works focus on meta-generalization to unseen tasks at the meta-level by regularizing the meta-loss, while ignoring that adapted models may not generalize to the task domains at the adaptation level. In this paper, we propose a new regularization mechanism for meta-learning -- Minimax-Meta Regularization, which employs inverted regularization at the inner loop and ordinary regularization at the outer loop during training. In particular, the inner inverted regularization makes the adapted model more difficult to generalize to task domains; thus, optimizing the outer-loop loss forces the meta-model to learn meta-knowledge with better generalization. Theoretically, we prove that inverted regularization improves the meta-testing performance by reducing generalization errors. We conduct extensive experiments on the representative scenarios, and the results show that our method consistently improves the performance of meta-learning algorithms.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here