Improving Graph Property Prediction with Generalized Readout Functions

21 Sep 2020  ·  Eric Alcaide ·

Graph property prediction is drawing increasing attention in the recent years due to the fact that graphs are one of the most general data structures since they can contain an arbitrary number of nodes and connections between them, and it is the backbone for many different tasks like classification and regression on such kind of data (networks, molecules, knowledge bases, ...). We introduce a novel generalized global pooling layer to mitigate the information loss that typically occurs at the Readout phase in Message-Passing Neural Networks. This novel layer is parametrized by two values ($\beta$ and $p$) which can optionally be learned, and the transformation it performs can revert to several already popular readout functions (mean, max and sum) under certain settings, which can be specified. To showcase the superior expressiveness and performance of this novel technique, we test it in a popular graph property prediction task by taking the current best-performing architecture and using our readout layer as a drop-in replacement and we report new state of the art results. The code to reproduce the experiments can be accessed here:

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here