Improving Semiconductor Device Modeling for Electronic Design Automation by Machine Learning Techniques

The semiconductors industry benefits greatly from the integration of Machine Learning (ML)-based techniques in Technology Computer-Aided Design (TCAD) methods. The performance of ML models however relies heavily on the quality and quantity of training datasets. They can be particularly difficult to obtain in the semiconductor industry due to the complexity and expense of the device fabrication. In this paper, we propose a self-augmentation strategy for improving ML-based device modeling using variational autoencoder-based techniques. These techniques require a small number of experimental data points and does not rely on TCAD tools. To demonstrate the effectiveness of our approach, we apply it to a deep neural network-based prediction task for the Ohmic resistance value in Gallium Nitride devices. A 70% reduction in mean absolute error when predicting experimental results is achieved. The inherent flexibility of our approach allows easy adaptation to various tasks, thus making it highly relevant to many applications of the semiconductor industry.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here