Improving Multi-generation Robustness of Learned Image Compression

31 Oct 2022  ·  Litian Li, Zheng Yang, Ronggang Wang ·

Benefit from flexible network designs and end-to-end joint optimization approach, learned image compression (LIC) has demonstrated excellent coding performance and practical feasibility in recent years. However, existing compression models suffer from serious multi-generation loss, which always occurs during image editing and transcoding. During the process of repeatedly encoding and decoding, the quality of the image will rapidly degrade, resulting in various types of distortion, which significantly limits the practical application of LIC. In this paper, a thorough analysis is carried out to determine the source of generative loss in successive image compression (SIC). We point out and solve the quantization drift problem that affects SIC, reversibility loss function as well as channel relaxation method are proposed to further reduce the generation loss. Experiments show that by using our proposed solutions, LIC can achieve comparable performance to the first compression of BPG even after 50 times reencoding without any change of the network structure.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here