Improving Neural Machine Translation with the Abstract Meaning Representation by Combining Graph and Sequence Transformers

NAACL (DLG4NLP) 2022  ·  Changmao Li, Jeffrey Flanigan ·

Previous studies have shown that the Abstract Meaning Representation (AMR) can improve Neural Machine Translation (NMT). However, there has been little work investigating incorporating AMR graphs into Transformer models. In this work, we propose a novel encoder-decoder architecture which augments the Transformer model with a Heterogeneous Graph Transformer (Yao et al., 2020) which encodes source sentence AMR graphs. Experimental results demonstrate the proposed model outperforms the Transformer model and previous non-Transformer based models on two different language pairs in both the high resource setting and low resource setting. Our source code, training corpus and released models are available at https://github.com/jlab-nlp/amr-nmt.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here