Improving Regret Bounds for Combinatorial Semi-Bandits with Probabilistically Triggered Arms and Its Applications

NeurIPS 2017  ·  Qinshi Wang, Wei Chen ·

We study combinatorial multi-armed bandit with probabilistically triggered arms (CMAB-T) and semi-bandit feedback. We resolve a serious issue in the prior CMAB-T studies where the regret bounds contain a possibly exponentially large factor of $1/p^*$, where $p^*$ is the minimum positive probability that an arm is triggered by any action. We address this issue by introducing a triggering probability modulated (TPM) bounded smoothness condition into the general CMAB-T framework, and show that many applications such as influence maximization bandit and combinatorial cascading bandit satisfy this TPM condition. As a result, we completely remove the factor of $1/p^*$ from the regret bounds, achieving significantly better regret bounds for influence maximization and cascading bandits than before. Finally, we provide lower bound results showing that the factor $1/p^*$ is unavoidable for general CMAB-T problems, suggesting that the TPM condition is crucial in removing this factor.

PDF Abstract NeurIPS 2017 PDF NeurIPS 2017 Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here