Incentive Designs for Learning Agents to Stabilize Coupled Exogenous Systems

27 Mar 2024  ·  Jair Certório, Nuno C. Martins, Richard J. La, Murat Arcak ·

We consider a large population of learning agents noncooperatively selecting strategies from a common set, influencing the dynamics of an exogenous system (ES) we seek to stabilize at a desired equilibrium. Our approach is to design a dynamic payoff mechanism capable of shaping the population's strategy profile, thus affecting the ES's state, by offering incentives for specific strategies within budget limits. Employing system-theoretic passivity concepts, we establish conditions under which a payoff mechanism can be systematically constructed to ensure the global asymptotic stabilization of the ES's equilibrium. In comparison to previous approaches originally studied in the context of the so-called epidemic population games, the method proposed here allows for more realistic epidemic models and other types of ES, such as predator-prey dynamics. Stabilization is established with the support of a Lyapunov function, which provides useful bounds on the transients.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here