Incidental Supervision: Moving beyond Supervised Learning

25 May 2020 Dan Roth

Machine Learning and Inference methods have become ubiquitous in our attempt to induce more abstract representations of natural language text, visual scenes, and other messy, naturally occurring data, and support decisions that depend on it. However, learning models for these tasks is difficult partly because generating the necessary supervision signals for it is costly and does not scale... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet