Incorporating Sememes into Chinese Definition Modeling

16 May 2019  ·  Liner Yang, Cunliang Kong, Yun Chen, Yang Liu, Qinan Fan, Erhong Yang ·

Chinese definition modeling is a challenging task that generates a dictionary definition in Chinese for a given Chinese word. To accomplish this task, we construct the Chinese Definition Modeling Corpus (CDM), which contains triples of word, sememes and the corresponding definition. We present two novel models to improve Chinese definition modeling: the Adaptive-Attention model (AAM) and the Self- and Adaptive-Attention Model (SAAM). AAM successfully incorporates sememes for generating the definition with an adaptive attention mechanism. It has the capability to decide which sememes to focus on and when to pay attention to sememes. SAAM further replaces recurrent connections in AAM with self-attention and relies entirely on the attention mechanism, reducing the path length between word, sememes and definition. Experiments on CDM demonstrate that by incorporating sememes, our best proposed model can outperform the state-of-the-art method by +6.0 BLEU.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here