Incremental Clustering: The Case for Extra Clusters

NeurIPS 2014  ·  Margareta Ackerman, Sanjoy Dasgupta ·

The explosion in the amount of data available for analysis often necessitates a transition from batch to incremental clustering methods, which process one element at a time and typically store only a small subset of the data. In this paper, we initiate the formal analysis of incremental clustering methods focusing on the types of cluster structure that they are able to detect... We find that the incremental setting is strictly weaker than the batch model, proving that a fundamental class of cluster structures that can readily be detected in the batch setting is impossible to identify using any incremental method. Furthermore, we show how the limitations of incremental clustering can be overcome by allowing additional clusters. read more

PDF Abstract NeurIPS 2014 PDF NeurIPS 2014 Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here