Incremental Stability and Performance Analysis of Discrete-Time Nonlinear Systems using the LPV Framework

19 Mar 2021  ·  Patrick J. W. Koelewijn, Roland Tóth ·

The dissipativity framework is widely used to analyze stability and performance of nonlinear systems. By embedding nonlinear systems in an LPV representation, the convex tools of the LPV framework can be applied to nonlinear systems for convex dissipativity based analysis and controller synthesis. However, as has been shown recently in literature, naive application of these tools to nonlinear systems for analysis and controller synthesis can fail to provide the desired guarantees. Namely, only performance and stability with respect to the origin is guaranteed. In this paper, inspired by the results for continuous-time nonlinear systems, the notion of incremental dissipativity for discrete-time nonlinear systems is proposed, whereby stability and performance analysis is done between trajectories. Furthermore, it is shown how, through the use of the LPV framework, convex conditions can be obtained for incremental dissipativity analysis of discrete-time nonlinear systems. The developed concepts and tools are demonstrated by analyzing incremental dissipativity of a controlled unbalanced disk system.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here