Indexing Context-Sensitive Reachability

3 Sep 2021  ·  Qingkai Shi, Yongchao Wang, Charles Zhang ·

Many context-sensitive data flow analyses can be formulated as a variant of the all-pairs Dyck-CFL reachability problem, which, in general, is of sub-cubic time complexity and quadratic space complexity. Such high complexity significantly limits the scalability of context-sensitive data flow analysis and is not affordable for analyzing large-scale software. This paper presents \textsc{Flare}, a reduction from the CFL reachability problem to the conventional graph reachability problem for context-sensitive data flow analysis. This reduction allows us to benefit from recent advances in reachability indexing schemes, which often consume almost linear space for answering reachability queries in almost constant time. We have applied our reduction to a context-sensitive alias analysis and a context-sensitive information-flow analysis for C/C++ programs. Experimental results on standard benchmarks and open-source software demonstrate that we can achieve orders of magnitude speedup at the cost of only moderate space to store the indexes. The implementation of our approach is publicly available.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here