Individual Fairness under Uncertainty

Algorithmic fairness, the research field of making machine learning (ML) algorithms fair, is an established area in ML. As ML technologies expand their application domains, including ones with high societal impact, it becomes essential to take fairness into consideration during the building of ML systems. Yet, despite its wide range of socially sensitive applications, most work treats the issue of algorithmic bias as an intrinsic property of supervised learning, i.e., the class label is given as a precondition. Unlike prior studies in fairness, we propose an individual fairness measure and a corresponding algorithm that deal with the challenges of uncertainty arising from censorship in class labels, while enforcing similar individuals to be treated similarly from a ranking perspective, free of the Lipschitz condition in the conventional individual fairness definition. We argue that this perspective represents a more realistic model of fairness research for real-world application deployment and show how learning with such a relaxed precondition draws new insights that better explains algorithmic fairness. We conducted experiments on four real-world datasets to evaluate our proposed method compared to other fairness models, demonstrating its superiority in minimizing discrimination while maintaining predictive performance with uncertainty present.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here