Inductive Knowledge Graph Completion with GNNs and Rules: An Analysis

The task of inductive knowledge graph completion requires models to learn inference patterns from a training graph, which can then be used to make predictions on a disjoint test graph. Rule-based methods seem like a natural fit for this task, but in practice they significantly underperform state-of-the-art methods based on Graph Neural Networks (GNNs), such as NBFNet. We hypothesise that the underperformance of rule-based methods is due to two factors: (i) implausible entities are not ranked at all and (ii) only the most informative path is taken into account when determining the confidence in a given link prediction answer. To analyse the impact of these factors, we study a number of variants of a rule-based approach, which are specifically aimed at addressing the aforementioned issues. We find that the resulting models can achieve a performance which is close to that of NBFNet. Crucially, the considered variants only use a small fraction of the evidence that NBFNet relies on, which means that they largely keep the interpretability advantage of rule-based methods. Moreover, we show that a further variant, which does look at the full KG, consistently outperforms NBFNet.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here