High-dimensional Inference and FDR Control for Simulated Markov Random Fields

11 Feb 2022  ·  Haoyu Wei, Xiaoyu Lei, Yixin Han, Huiming Zhang ·

Identifying important features linked to a response variable is a fundamental task in various scientific domains. This article explores statistical inference for simulated Markov random fields in high-dimensional settings. We introduce a methodology based on Markov Chain Monte Carlo Maximum Likelihood Estimation (MCMC-MLE) with Elastic-net regularization. Under mild conditions on the MCMC method, our penalized MCMC-MLE method achieves $\ell_{1}$-consistency. We propose a decorrelated score test, establishing both its asymptotic normality and that of a one-step estimator, along with the associated confidence interval. Furthermore, we construct two false discovery rate control procedures via the asymptotic behaviors for both p-values and e-values. Comprehensive numerical simulations confirm the theoretical validity of the proposed methods.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here