Inference is Everything: Recasting Semantic Resources into a Unified Evaluation Framework

We propose to unify a variety of existing semantic classification tasks, such as semantic role labeling, anaphora resolution, and paraphrase detection, under the heading of Recognizing Textual Entailment (RTE). We present a general strategy to automatically generate one or more sentential hypotheses based on an input sentence and pre-existing manual semantic annotations. The resulting suite of datasets enables us to probe a statistical RTE model{'}s performance on different aspects of semantics. We demonstrate the value of this approach by investigating the behavior of a popular neural network RTE model.

PDF Abstract IJCNLP 2017 PDF IJCNLP 2017 Abstract


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here