INFERENCE, PREDICTION, AND ENTROPY RATE OF CONTINUOUS-TIME, DISCRETE-EVENT PROCESSES

ICLR 2020  ·  Sarah Marzen, James P. Crutchfield ·

The inference of models, prediction of future symbols, and entropy rate estimation of discrete-time, discrete-event processes is well-worn ground. However, many time series are better conceptualized as continuous-time, discrete-event processes. Here, we provide new methods for inferring models, predicting future symbols, and estimating the entropy rate of continuous-time, discrete-event processes. The methods rely on an extension of Bayesian structural inference that takes advantage of neural network’s universal approximation power. Based on experiments with simple synthetic data, these new methods seem to be competitive with state-of- the-art methods for prediction and entropy rate estimation as long as the correct model is inferred.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here