Infinitely Deep Bayesian Neural Networks with Stochastic Differential Equations

12 Feb 2021  ·  Winnie Xu, Ricky T. Q. Chen, Xuechen Li, David Duvenaud ·

We perform scalable approximate inference in continuous-depth Bayesian neural networks. In this model class, uncertainty about separate weights in each layer gives hidden units that follow a stochastic differential equation. We demonstrate gradient-based stochastic variational inference in this infinite-parameter setting, producing arbitrarily-flexible approximate posteriors. We also derive a novel gradient estimator that approaches zero variance as the approximate posterior over weights approaches the true posterior. This approach brings continuous-depth Bayesian neural nets to a competitive comparison against discrete-depth alternatives, while inheriting the memory-efficient training and tunable precision of Neural ODEs.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods