Influence-Directed Explanations for Deep Convolutional Networks

We study the problem of explaining a rich class of behavioral properties of deep neural networks. Distinctively, our influence-directed explanations approach this problem by peering inside the network to identify neurons with high influence on a quantity and distribution of interest, using an axiomatically-justified influence measure, and then providing an interpretation for the concepts these neurons represent... (read more)

PDF Abstract ICLR 2018 PDF ICLR 2018 Abstract

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet