Info-Evo: Using Information Geometry to Guide Evolutionary Program Learning

20 Feb 2021  ·  Ben Goertzel ·

A novel optimization strategy, Info-Evo, is described, in which natural gradient search using nonparametric Fisher information is used to provide ongoing guidance to an evolutionary learning algorithm, so that the evolutionary process preferentially moves in the directions identified as "shortest paths" according to the natural gradient. Some specifics regarding the application of this approach to automated program learning are reviewed, including a strategy for integrating Info-Evo into the MOSES program learning framework.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here