Information Complexity and Generalization Bounds

4 May 2021  ·  Pradeep Kr. Banerjee, Guido Montúfar ·

We present a unifying picture of PAC-Bayesian and mutual information-based upper bounds on the generalization error of randomized learning algorithms. As we show, Tong Zhang's information exponential inequality (IEI) gives a general recipe for constructing bounds of both flavors. We show that several important results in the literature can be obtained as simple corollaries of the IEI under different assumptions on the loss function. Moreover, we obtain new bounds for data-dependent priors and unbounded loss functions. Optimizing the bounds gives rise to variants of the Gibbs algorithm, for which we discuss two practical examples for learning with neural networks, namely, Entropy- and PAC-Bayes- SGD. Further, we use an Occam's factor argument to show a PAC-Bayesian bound that incorporates second-order curvature information of the training loss.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods