Information Plane Analysis Visualization in Deep Learning via Transfer Entropy

1 Apr 2024  ·  Adrian Moldovan, Angel Cataron, Razvan Andonie ·

In a feedforward network, Transfer Entropy (TE) can be used to measure the influence that one layer has on another by quantifying the information transfer between them during training. According to the Information Bottleneck principle, a neural model's internal representation should compress the input data as much as possible while still retaining sufficient information about the output. Information Plane analysis is a visualization technique used to understand the trade-off between compression and information preservation in the context of the Information Bottleneck method by plotting the amount of information in the input data against the compressed representation. The claim that there is a causal link between information-theoretic compression and generalization, measured by mutual information, is plausible, but results from different studies are conflicting. In contrast to mutual information, TE can capture temporal relationships between variables. To explore such links, in our novel approach we use TE to quantify information transfer between neural layers and perform Information Plane analysis. We obtained encouraging experimental results, opening the possibility for further investigations.

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here