Information-Theoretic Methods for Planning and Learning in Partially Observable Markov Decision Processes

24 Sep 2016 Roy Fox

Bounded agents are limited by intrinsic constraints on their ability to process information that is available in their sensors and memory and choose actions and memory updates. In this dissertation, we model these constraints as information-rate constraints on communication channels connecting these various internal components of the agent... (read more)

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet