InfraRed Investigation in Singapore (IRIS) Observatory: Urban heat island contributors and mitigators analysis using neighborhood-scale thermal imaging

21 Oct 2022  ·  Miguel Martin, Vasantha Ramani, Clayton Miller ·

This paper studies heat fluxes from contributors and mitigators of urban heat islands using thermal images and weather data. Thermal images were collected from an observatory operating on the rooftop of a building between November 2021 and April 2022. Over the same period, an automatic weather station network was used to measure weather conditions at several locations on a university campus in Singapore. From data collected by the observatory and the automatic weather station network, a method was developed to estimate the heat emitted by building facades, vegetation, and traffic. Before performing the analysis of urban heat fluxes, it was observed that the surface temperature collected from the observatory is sensitive to some variables. After the sensitivity analysis, thermal images were calibrated against measurements of the surface temperature in an outdoor environment. Finally, several contributors and mitigators of urban heat islands were analyzed from heat fluxes assessed with thermal images and weather data. According to thermal images collected by the rooftop observatory, concrete walls are an important contributor to urban heat islands due to the longwave radiation they emit at night. Vegetation, on the other hand, seems to be an effective mitigator because of latent heat fluxes generated by evapotranspiration. Traffic looks to be a negligible source of heat if considered over a small portion of a road. In the future, more efforts can be made to estimate the magnitude of the heat released by an air-conditioning system from thermal images.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here