Initialization Using Perlin Noise for Training Networks with a Limited Amount of Data

19 Jan 2021  ·  Nakamasa Inoue, Eisuke Yamagata, Hirokatsu Kataoka ·

We propose a novel network initialization method using Perlin noise for training image classification networks with a limited amount of data. Our main idea is to initialize the network parameters by solving an artificial noise classification problem, where the aim is to classify Perlin noise samples into their noise categories. Specifically, the proposed method consists of two steps. First, it generates Perlin noise samples with category labels defined based on noise complexity. Second, it solves a classification problem, in which network parameters are optimized to classify the generated noise samples. This method produces a reasonable set of initial weights (filters) for image classification. To the best of our knowledge, this is the first work to initialize networks by solving an artificial optimization problem without using any real-world images. Our experiments show that the proposed method outperforms conventional initialization methods on four image classification datasets.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here