Injecting Logical Constraints into Neural Networks via Straight-Through Estimators

10 Jul 2023  ·  Zhun Yang, Joohyung Lee, Chiyoun Park ·

Injecting discrete logical constraints into neural network learning is one of the main challenges in neuro-symbolic AI. We find that a straight-through-estimator, a method introduced to train binary neural networks, could effectively be applied to incorporate logical constraints into neural network learning. More specifically, we design a systematic way to represent discrete logical constraints as a loss function; minimizing this loss using gradient descent via a straight-through-estimator updates the neural network's weights in the direction that the binarized outputs satisfy the logical constraints. The experimental results show that by leveraging GPUs and batch training, this method scales significantly better than existing neuro-symbolic methods that require heavy symbolic computation for computing gradients. Also, we demonstrate that our method applies to different types of neural networks, such as MLP, CNN, and GNN, making them learn with no or fewer labeled data by learning directly from known constraints.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here