Inpainting Computational Fluid Dynamics with Deep Learning

27 Feb 2024  ·  Dule Shu, Wilson Zhen, Zijie Li, Amir Barati Farimani ·

Fluid data completion is a research problem with high potential benefit for both experimental and computational fluid dynamics. An effective fluid data completion method reduces the required number of sensors in a fluid dynamics experiment, and allows a coarser and more adaptive mesh for a Computational Fluid Dynamics (CFD) simulation. However, the ill-posed nature of the fluid data completion problem makes it prohibitively difficult to obtain a theoretical solution and presents high numerical uncertainty and instability for a data-driven approach (e.g., a neural network model). To address these challenges, we leverage recent advancements in computer vision, employing the vector quantization technique to map both complete and incomplete fluid data spaces onto discrete-valued lower-dimensional representations via a two-stage learning procedure. We demonstrated the effectiveness of our approach on Kolmogorov flow data (Reynolds number: 1000) occluded by masks of different size and arrangement. Experimental results show that our proposed model consistently outperforms benchmark models under different occlusion settings in terms of point-wise reconstruction accuracy as well as turbulent energy spectrum and vorticity distribution.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here