Inplace Gated Convolutional Recurrent Neural Network For Dual-channel Speech Enhancement

26 Jul 2021  ·  Jinjiang Liu, Xueliang Zhang ·

For dual-channel speech enhancement, it is a promising idea to design an end-to-end model based on the traditional array signal processing guideline and the manifold space of multi-channel signals. We found that the idea above can be effectively implemented by the classical convolutional recurrent neural networks (CRN) architecture. We propose a very compact in place gated convolutional recurrent neural network (inplace GCRN) for end-to-end multi-channel speech enhancement, which utilizes inplace-convolution for frequency pattern extraction and reconstruction. The inplace characteristics efficiently preserve spatial cues in each frequency bin for channel-wise long short-term memory neural networks (LSTM) tracing the spatial source. In addition, we come up with a new spectrum recovery method by predict amplitude mask, mapping, and phase, which effectively improves the speech quality.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here