Instance Significance Guided Multiple Instance Boosting for Robust Visual Tracking

19 Jan 2015  ·  Jinwu Liu, Yao Lu, Tianfei Zhou ·

Multiple Instance Learning (MIL) recently provides an appealing way to alleviate the drifting problem in visual tracking. Following the tracking-by-detection framework, an online MILBoost approach is developed that sequentially chooses weak classifiers by maximizing the bag likelihood... In this paper, we extend this idea towards incorporating the instance significance estimation into the online MILBoost framework. First, instead of treating all instances equally, with each instance we associate a significance-coefficient that represents its contribution to the bag likelihood. The coefficients are estimated by a simple Bayesian formula that jointly considers the predictions from several standard MILBoost classifiers. Next, we follow the online boosting framework, and propose a new criterion for the selection of weak classifiers. Experiments with challenging public datasets show that the proposed method outperforms both existing MIL based and boosting based trackers. read more

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here