Integral Privacy for Sampling

13 Jun 2018  ·  Hisham Husain, Zac Cranko, Richard Nock ·

Differential privacy is a leading protection setting, focused by design on individual privacy. Many applications, in medical / pharmaceutical domains or social networks, rather posit privacy at a group level, a setting we call integral privacy. We aim for the strongest form of privacy: the group size is in particular not known in advance. We study a problem with related applications in domains cited above that have recently met with substantial recent press: sampling. Keeping correct utility levels in such a strong model of statistical indistinguishability looks difficult to be achieved with the usual differential privacy toolbox because it would typically scale in the worst case the sensitivity by the sample size and so the noise variance by up to its square. We introduce a trick specific to sampling that bypasses the sensitivity analysis. Privacy enforces an information theoretic barrier on approximation, and we show how to reach this barrier with guarantees on the approximation of the target non private density. We do so using a recent approach to non private density estimation relying on the original boosting theory, learning the sufficient statistics of an exponential family with classifiers. Approximation guarantees cover the mode capture problem. In the context of learning, the sampling problem is particularly important: because integral privacy enjoys the same closure under post-processing as differential privacy does, any algorithm using integrally privacy sampled data would result in an output equally integrally private. We also show that this brings fairness guarantees on post-processing that would eventually elude classical differential privacy: any decision process has bounded data-dependent bias when the data is integrally privately sampled. Experimental results against private kernel density estimation and private GANs displays the quality of our results.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here