Integrated analysis of the urban water-electricity demand nexus in the Midwestern United States

26 Feb 2019  ·  Renee Obringer, Rohini Kumar, Roshanak Nateghi ·

Considering the interdependencies between water and electricity use is critical for ensuring conservation measures are successful in lowering the net water and electricity use in a city. This water-electricity demand nexus will become even more important as cities continue to grow, causing water and electricity utilities additional stress, especially given the likely impacts of future global climatic and socioeconomic changes... Here, we propose a modeling framework based in statistical learning theory for predicting the climate-sensitive portion of the coupled water-electricity demand nexus. The predictive models were built and tested on six Midwestern cities. The results showed that water use was better predicted than electricity use, indicating that water use is slightly more sensitive to climate than electricity use. Additionally, the results demonstrated the importance of the variability in the El Nino/Southern Oscillation index, which explained the majority of the covariance in the water-electricity nexus. Our modeling results suggest that stronger El Ninos lead to an overall increase in water and electricity use in these cities. The integrated modeling framework presented here can be used to characterize the climate-related sensitivity of the water-electricity demand nexus, accounting for the coupled water and electricity use rather than modeling them separately, as independent variables. read more

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here