An adaptive neuro-fuzzy model for attitude estimation and 2 control a 3 DOF system

21 Apr 2020  ·  Xin Wang, SeyedMehdi Abtahi, Mahmood Chahari, Tianyu Zhao ·

In recent decades, one of the scientists' main concerns has been to improve the accuracy of satellite attitude, regardless of the expense. The obvious result is that a large number of control strategies have been used to address this problem. In this study, an adaptive neuro-fuzzy integrated (ANFIS) satellite attitude estimation and control system was developed. The controller is trained with the data provided by an optimal controller. A pulse modulator is used to generate the right ON/OFF commands of the thruster actuator. To evaluate the performance of the AN-FIS controller in closed-loop simulation, an ANFIS observer is used to estimate the attitude and angular velocities of the satellite using magnetometer, sun sensor and data gyro data. In addition, a new ANFIS system will be proposed and evaluated that can jointly control and estimate the system. The performance of the ANFIS controller is compared to the optimal PID controller in a Monte Carlo simulation with different initial conditions, disturbance and noise. The results show that the ANFIS controller can surpass the optimal PID controller in several aspects, including time and smoothness. In addition, the ANFIS estimator is examined and the results demonstrate the high ability of this designated observers. Both the control and estimation phases are simulated by a single ANFIS subsystem, taking into account the high capacity of ANFIS, and the results of using the ANFIS model are demonstrated.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here