Intelligent Blockage Recognition using Cellular mmWave Beamforming Data: Feasibility Study

Joint Communication and Sensing (JCAS) is envisioned for 6G cellular networks, where sensing the operation environment, especially in presence of humans, is as important as the high-speed wireless connectivity. Sensing, and subsequently recognizing blockage types, is an initial step towards signal blockage avoidance. In this context, we investigate the feasibility of using human motion recognition as a surrogate task for blockage type recognition through a set of hypothesis validation experiments using both qualitative and quantitative analysis (visual inspection and hyperparameter tuning of deep learning (DL) models, respectively). A surrogate task is useful for DL model testing and/or pre-training, thereby requiring a low amount of data to be collected from the eventual JCAS environment. Therefore, we collect and use a small dataset from a 26 GHz cellular multi-user communication device with hybrid beamforming. The data is converted into Doppler Frequency Spectrum (DFS) and used for hypothesis validations. Our research shows that (i) the presence of domain shift between data used for learning and inference requires use of DL models that can successfully handle it, (ii) DFS input data dilution to increase dataset volume should be avoided, (iii) a small volume of input data is not enough for reasonable inference performance, (iv) higher sensing resolution, causing lower sensitivity, should be handled by doing more activities/gestures per frame and lowering sampling rate, and (v) a higher reported sampling rate to STFT during pre-processing may increase performance, but should always be tested on a per learning task basis.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here