Interactive Editing for Text Summarization

5 Jun 2023  ·  Yujia Xie, Xun Wang, Si-Qing Chen, Wayne Xiong, Pengcheng He ·

Summarizing lengthy documents is a common and essential task in our daily lives. Although recent advancements in neural summarization models can assist in crafting general-purpose summaries, human writers often have specific requirements that call for a more customized approach. To address this need, we introduce REVISE (Refinement and Editing via Iterative Summarization Enhancement), an innovative framework designed to facilitate iterative editing and refinement of draft summaries by human writers. Within our framework, writers can effortlessly modify unsatisfactory segments at any location or length and provide optional starting phrases -- our system will generate coherent alternatives that seamlessly integrate with the existing summary. At its core, REVISE incorporates a modified fill-in-the-middle model with the encoder-decoder architecture while developing novel evaluation metrics tailored for the summarization task. In essence, our framework empowers users to create high-quality, personalized summaries by effectively harnessing both human expertise and AI capabilities, ultimately transforming the summarization process into a truly collaborative and adaptive experience.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here