Interference-Resilient OFDM Waveform Design with Subcarrier Interval Constraint for ISAC Systems

26 Dec 2023  ·  Qinghui Lu, Zhen Du, Zenghui Zhang ·

Conventional orthogonal frequency division multiplexing (OFDM) waveform design in integrated sensing and communications (ISAC) systems usually selects the channels with high-frequency responses to transmit communication data, which does not fully consider the possible interference in the environment. To mitigate these adverse effects, we propose an optimization model by weighting between peak sidelobe level and communication data rate, with power and communication subcarrier interval constraints. To tackle the resultant nonconvex problem, an iterative adaptive cyclic minimization (ACM) algorithm is developed, where an adaptive iterative factor is introduced to improve convergence. Subsequently, the least squares algorithm is used to reduce the coefficient of variation of envelopes by further optimizing the phase of the OFDM waveform. Finally, the numerical simulations are provided to demonstrate the interference-resilient ability of the proposed OFDM strategy and the robustness of the ACM algorithm.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here