Intermittent Inference with Nonuniformly Compressed Multi-Exit Neural Network for Energy Harvesting Powered Devices

23 Apr 2020  ·  Yawen Wu, Zhepeng Wang, Zhenge Jia, Yiyu Shi, Jingtong Hu ·

This work aims to enable persistent, event-driven sensing and decision capabilities for energy-harvesting (EH)-powered devices by deploying lightweight DNNs onto EH-powered devices. However, harvested energy is usually weak and unpredictable and even lightweight DNNs take multiple power cycles to finish one inference. To eliminate the indefinite long wait to accumulate energy for one inference and to optimize the accuracy, we developed a power trace-aware and exit-guided network compression algorithm to compress and deploy multi-exit neural networks to EH-powered microcontrollers (MCUs) and select exits during execution according to available energy. The experimental results show superior accuracy and latency compared with state-of-the-art techniques.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here