Interpolating Convex and Non-Convex Tensor Decompositions via the Subspace Norm

NeurIPS 2015  ·  Qinqing Zheng, Ryota Tomioka ·

We consider the problem of recovering a low-rank tensor from its noisy observation. Previous work has shown a recovery guarantee with signal to noise ratio $O(n^{\lceil K/2 \rceil /2})$ for recovering a $K$th order rank one tensor of size $n\times \cdots \times n$ by recursive unfolding. In this paper, we first improve this bound to $O(n^{K/4})$ by a much simpler approach, but with a more careful analysis. Then we propose a new norm called the subspace norm, which is based on the Kronecker products of factors obtained by the proposed simple estimator. The imposed Kronecker structure allows us to show a nearly ideal $O(\sqrt{n}+\sqrt{H^{K-1}})$ bound, in which the parameter $H$ controls the blend from the non-convex estimator to mode-wise nuclear norm minimization. Furthermore, we empirically demonstrate that the subspace norm achieves the nearly ideal denoising performance even with $H=O(1)$.

PDF Abstract NeurIPS 2015 PDF NeurIPS 2015 Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here