Interpretable Deep Convolutional Neural Networks via Meta-learning

2 Feb 2018  ·  Xuan Liu, Xiaoguang Wang, Stan Matwin ·

Model interpretability is a requirement in many applications in which crucial decisions are made by users relying on a model's outputs. The recent movement for "algorithmic fairness" also stipulates explainability, and therefore interpretability of learning models. And yet the most successful contemporary Machine Learning approaches, the Deep Neural Networks, produce models that are highly non-interpretable. We attempt to address this challenge by proposing a technique called CNN-INTE to interpret deep Convolutional Neural Networks (CNN) via meta-learning. In this work, we interpret a specific hidden layer of the deep CNN model on the MNIST image dataset. We use a clustering algorithm in a two-level structure to find the meta-level training data and Random Forest as base learning algorithms to generate the meta-level test data. The interpretation results are displayed visually via diagrams, which clearly indicates how a specific test instance is classified. Our method achieves global interpretation for all the test instances without sacrificing the accuracy obtained by the original deep CNN model. This means our model is faithful to the deep CNN model, which leads to reliable interpretations.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods