Paper

An Equivalence between Bayesian Priors and Penalties in Variational Inference

In machine learning, it is common to optimize the parameters of a probabilistic model, modulated by an ad hoc regularization term that penalizes some values of the parameters. Regularization terms appear naturally in Variational Inference, a tractable way to approximate Bayesian posteriors: the loss to optimize contains a Kullback--Leibler divergence term between the approximate posterior and a Bayesian prior. We fully characterize the regularizers that can arise according to this procedure, and provide a systematic way to compute the prior corresponding to a given penalty. Such a characterization can be used to discover constraints over the penalty function, so that the overall procedure remains Bayesian.

Results in Papers With Code
(↓ scroll down to see all results)