Interpreting Neural Policies with Disentangled Tree Representations

13 Oct 2022  ·  Tsun-Hsuan Wang, Wei Xiao, Tim Seyde, Ramin Hasani, Daniela Rus ·

The advancement of robots, particularly those functioning in complex human-centric environments, relies on control solutions that are driven by machine learning. Understanding how learning-based controllers make decisions is crucial since robots are often safety-critical systems. This urges a formal and quantitative understanding of the explanatory factors in the interpretability of robot learning. In this paper, we aim to study interpretability of compact neural policies through the lens of disentangled representation. We leverage decision trees to obtain factors of variation [1] for disentanglement in robot learning; these encapsulate skills, behaviors, or strategies toward solving tasks. To assess how well networks uncover the underlying task dynamics, we introduce interpretability metrics that measure disentanglement of learned neural dynamics from a concentration of decisions, mutual information and modularity perspective. We showcase the effectiveness of the connection between interpretability and disentanglement consistently across extensive experimental analysis.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here