Redundancy and Concept Analysis for Code-trained Language Models

1 May 2023  ·  Arushi Sharma, Zefu Hu, Christopher Quinn, Ali Jannesari ·

Code-trained language models have proven to be highly effective for various code intelligence tasks. However, they can be challenging to train and deploy for many software engineering applications due to computational bottlenecks and memory constraints. Implementing effective strategies to address these issues requires a better understanding of these 'black box' models. In this paper, we perform the first neuron-level analysis for source code models to identify \textit{important} neurons within latent representations. We achieve this by eliminating neurons that are highly similar or irrelevant to the given task. This approach helps us understand which neurons and layers can be eliminated (redundancy analysis) and where important code properties are located within the network (concept analysis). Using redundancy analysis, we make observations relevant to knowledge transfer and model optimization applications. We find that over 95\% of the neurons are redundant with respect to our code intelligence tasks and can be eliminated without significant loss in accuracy. We also discover several subsets of neurons that can make predictions with baseline accuracy. Through concept analysis, we explore the traceability and distribution of human-recognizable concepts within latent code representations which could be used to influence model predictions. We trace individual and subsets of important neurons to specific code properties and identify 'number' neurons, 'string' neurons, and higher-level 'text' neurons for token-level tasks and higher-level concepts important for sentence-level downstream tasks. This also helps us understand how decomposable and transferable task-related features are and can help devise better techniques for transfer learning, model compression, and the decomposition of deep neural networks into modules.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here