Interpreting weight maps in terms of cognitive or clinical neuroscience: nonsense?

30 Apr 2018  ·  Jessica Schrouff, Janaina Mourao-Miranda ·

Since machine learning models have been applied to neuroimaging data, researchers have drawn conclusions from the derived weight maps. In particular, weight maps of classifiers between two conditions are often described as a proxy for the underlying signal differences between the conditions. Recent studies have however suggested that such weight maps could not reliably recover the source of the neural signals and even led to false positives (FP). In this work, we used semi-simulated data from ElectroCorticoGraphy (ECoG) to investigate how the signal-to-noise ratio and sparsity of the neural signal affect the similarity between signal and weights. We show that not all cases produce FP and that it is unlikely for FP features to have a high weight in most cases.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here