Inverse Optimal Control for Linear Quadratic Tracking with Unknown Target States

27 Feb 2024  ·  Yao Li, Chengpu Yu, Hao Fang, Jie Chen ·

This paper addresses the inverse optimal control for the linear quadratic tracking problem with a fixed but unknown target state, which aims to estimate the possible triplets comprising the target state, the state weight matrix, and the input weight matrix from observed optimal control input and the corresponding state trajectories. Sufficient conditions have been provided for the unique determination of both the linear quadratic cost function as well as the target state. A computationally efficient and numerically reliable parameter identification algorithm is proposed by equating optimal control strategies with a system of linear equations, and the associated relative error upper bound is derived in terms of data volume and signal-to-noise ratio. Moreover, the proposed inverse optimal control algorithm is applied for the joint cluster coordination and intent identification of a multi-agent system. By incorporating the structural constraint of the Laplace matrix, the relative error upper bound can be reduced accordingly. Finally, the algorithm's efficiency and accuracy are validated by a vehicle-on-a-lever example and a multi-agent formation control example.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here