Inverse Reinforcement Learning: A Control Lyapunov Approach

9 Apr 2021  ·  Samuel Tesfazgi, Armin Lederer, Sandra Hirche ·

Inferring the intent of an intelligent agent from demonstrations and subsequently predicting its behavior, is a critical task in many collaborative settings. A common approach to solve this problem is the framework of inverse reinforcement learning (IRL), where the observed agent, e.g., a human demonstrator, is assumed to behave according to an intrinsic cost function that reflects its intent and informs its control actions. In this work, we reformulate the IRL inference problem to learning control Lyapunov functions (CLF) from demonstrations by exploiting the inverse optimality property, which states that every CLF is also a meaningful value function. Moreover, the derived CLF formulation directly guarantees stability of inferred control policies. We show the flexibility of our proposed method by learning from goal-directed movement demonstrations in a continuous environment.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here