Investigating neural architectures for short answer scoring

Neural approaches to automated essay scoring have recently shown state-of-the-art performance. The automated essay scoring task typically involves a broad notion of writing quality that encompasses content, grammar, organization, and conventions. This differs from the short answer content scoring task, which focuses on content accuracy. The inputs to neural essay scoring models {--} ngrams and embeddings {--} are arguably well-suited to evaluate content in short answer scoring tasks. We investigate how several basic neural approaches similar to those used for automated essay scoring perform on short answer scoring. We show that neural architectures can outperform a strong non-neural baseline, but performance and optimal parameter settings vary across the more diverse types of prompts typical of short answer scoring.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here