IOHexperimenter: Benchmarking Platform for Iterative Optimization Heuristics

7 Nov 2021  ·  Jacob de Nobel, Furong Ye, Diederick Vermetten, Hao Wang, Carola Doerr, Thomas Bäck ·

We present IOHexperimenter, the experimentation module of the IOHprofiler project, which aims at providing an easy-to-use and highly customizable toolbox for benchmarking iterative optimization heuristics such as local search, evolutionary and genetic algorithms, Bayesian optimization techniques, etc. IOHexperimenter can be used as a stand-alone tool or as part of a benchmarking pipeline that uses other components of IOHprofiler such as IOHanalyzer, the module for interactive performance analysis and visualization. IOHexperimenter provides an efficient interface between optimization problems and their solvers while allowing for granular logging of the optimization process. These logs are fully compatible with existing tools for interactive data analysis, which significantly speeds up the deployment of a benchmarking pipeline. The main components of IOHexperimenter are the environment to build customized problem suites and the various logging options that allow users to steer the granularity of the data records.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here