Is Homophily a Necessity for Graph Neural Networks?

ICLR 2022  ·  Yao Ma, Xiaorui Liu, Neil Shah, Jiliang Tang ·

Graph neural networks (GNNs) have shown great prowess in learning representations suitable for numerous graph-based machine learning tasks. When applied to semi-supervised node classification, GNNs are widely believed to work well due to the homophily assumption ("like attracts like"), and fail to generalize to heterophilous graphs where dissimilar nodes connect. Recent works design new architectures to overcome such heterophily-related limitations, citing poor baseline performance and new architecture improvements on a few heterophilous graph benchmark datasets as evidence for this notion. In our experiments, we empirically find that standard graph convolutional networks (GCNs) can actually achieve better performance than such carefully designed methods on some commonly used heterophilous graphs. This motivates us to reconsider whether homophily is truly necessary for good GNN performance. We find that this claim is not quite true, and in fact, GCNs can achieve strong performance on heterophilous graphs under certain conditions. Our work carefully characterizes these conditions, and provides supporting theoretical understanding and empirical observations. Finally, we examine existing heterophilous graphs benchmarks and reconcile how the GCN (under)performs on them based on this understanding.

PDF Abstract ICLR 2022 PDF ICLR 2022 Abstract
No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods